🌐 Tools for Getting Data
Getting data can be tough, and then getting it into a usable format can often be as bad or worse. Thankfully this is SounderPy’s main purpose and strong suit!
SounderPy is currently capable of accessing and processing data from:
DATA |
FUNCTION |
TYPE |
TIME RANGE |
---|---|---|---|
ECMWF CDS ERA5 reanalysis* |
get_model_data() |
Reanalysis |
1940-present |
UNIDATA THREDDS TDS RAP |
get_model_data() |
Reanalysis |
2005-present |
UNIDATA THREDDS TDS RUC |
get_model_data() |
Reanalysis |
2005-2020 |
UNIDATA THREDDS NCEP-FNL |
get_model_data() |
Reanalysis |
2005-2020 |
ISU’s BUFKIT archive |
get_bufkit_data() |
Model Forecast |
2011-present |
PSU’s BUFKIT feed |
get_bufkit_data() |
Model Forecast |
Most recent runs |
UNIDATA THREDDS TDS RAP |
get_model_data() |
Model Analysis |
Most recent run |
OU ACARS Archive |
acars_data() |
Observations |
2019-present |
The Unv. of WY RAOB Archive |
get_obs_data() |
Observations |
1973-present |
IGRAv2 Observation Archive |
get_obs_data() |
Observations |
1905-present |
Model Reanalysis Data | RAP, ERA5, NCEP
SounderPy hosts a simple function used to access model reanalysis profile data from the ERA5, RAP / RUC, & NCEP FNL datasets
This tool accesses pressure-level and surface model data, parses it using a ‘box average approach’, and creates a Python dictionary (referred to as a SounderPy clean_data dict in this documentation), of the vertical profile.
When accessing RAP-RUC data, this tool will search for the given date/time in a list of RAP & RUC datasets available through NCEI – each dataset does have varying output. Because of this, a new argument, dataset, allows you to target a specific dataset instead of searching for the first dataset with the desired date/time.
We can use the simple spy.get_model_data()
function:
- spy.get_model_data(model, latlon, year, month, day, hour, dataset=None, box_avg_size=0.10, hush=False, clean_it=True)
Return a
dict
of ‘cleaned up’ model reanalysis data from a given model, for a given location, date, and time- Parameters:
model (str, required) – the requested model to use (“rap-ruc”, “era5”, “ncep”)
latlon (list, required) – the latitude & longitude pair for sounding ([44.92, -84.72])
year (str, required) – valid year
month (str, required) – valid month
day (str, required) – valid day
hour (str, required) – required, valid hour
dataset (str, optional, default is None) – target a specific dataset instead of searching for the first one with data (“rap-ruc” only).
box_avg_size (int, optional, Default is 0.10) – determine an area-averaged box size, in degrees, by which gridded model data will be averaged to find a single vertical porfile.
hush (bool, optional, default is False) – whether to ‘hush’ a read-out of thermodynamic and kinematic parameters when getting data.
clean_it (bool, optional, default is True) – whether to return the raw_data object or a clean_data dict.
- Returns:
clean_data, a dict of ready-to-use vertical profile data including pressure, height, temperature, dewpoint, u-wind, v-wind, omega & model information
- Return type:
dict
Model key names
'era5'
: ECMWF renalysis v5 (ERA5), reanalysis
'rap'
, or'rap-ruc'
: NCEP Rapid Refresh model (RAP) / Rapid Update Cycle model (RUC), reanalysis
'ncep'
: NCEP Global Data Assimilation System/Final 0.25 degree (ncep-fnl), reanalysis
'rap-now'
: NCEP Rapid Refresh model, latest analysis
Dataset key names
'RAP_25km'
'RAP_25km_old'
'RAP_25km_anl'
'RAP_25km_anl_old'
'RAP_13km'
'RAP_13km_old'
'RAP_13km_anl'
'RAP_13km_anl_old'
'RUC_13km'
'RUC_13km_old'
'RUC_25km'
'RUC_25km_old'
Latitude-Longitude pairs
A list of floats:
[44.92, -84.72]
Note
BEWARE This data is reanalysis, therefore not a forecast & not entirely representative of the actual atmosphere. Understanding the caveats of using reanalysis model data is important when utilizing this function.
Tip
To access ERA5 data you -must- set API access to the ECMWF Climate Data Store (CDS). This includes….
creating a CDS API account
Setting up a CDS API personal access token
Creating a $HOME/.cdsapirc file
Follow the instructions on the CDSAPI “how to” documentation – See: https://cds.climate.copernicus.eu/how-to-api
Tip
Is data access taking forever? Sometimes the NCEP (RAP-RUC, NCEP-FNL) & ECMWF CDS (ERA5) servers are down and not able to be accessed. Sometimes these issues are resolved within hours, other times possibly a few days.
Model Forecast Data | BUFKIT
A function used to access BUFKIT model forecast vertical profile data for a given BUFKIT site
- spy.get_bufkit_data(model, station, fcst_hour, run_year=None, run_month=None, run_day=None, run_hour=None, hush=False, clean_it=True)
Return a
dict
of ‘cleaned up’ model forecast data from a given model, for a given BUFKIT site identifier, forecast hour, & model-run-date- Parameters:
model (str, required) – the model ‘key’ name to request data from
station (str, required) – a 3-4 digit BUFKIT site identifier
fcst_hour (int, required) – valid forecast hour
run_year (str, optional, Default=None) – valid year
run_month (str, optional, Default=None) – valid month
run_day (str, optional, Default=None) – valid day
run_hour (str, optional, Default=None) – valid hour
hush (bool, optional, default is False) – whether to ‘hush’ a read-out of thermodynamic and kinematic parameters when getting data.
clean_it (bool, optional, default is True) – whether to return the raw_data object or a clean_data dict.
- Returns:
clean_data, a dict of ready-to-use vertical profile data including pressure, height, temperature, dewpoint, u-wind, v-wind, omega, & model information
- Return type:
dict
Available BUFKIT Sites:
Available Models:
- Most recent model runs:
GFS, NAM, NAMNEST, RAP, HRRR, SREF & HIRESW
via Penn State’s BUFKIT Warehouse
- Archive model runs:
GFS, NAM, NAMNEST, RAP, HRRR
via Iowa State’s BUFKIT Warehouse
Model key names
hrrr
: High Resolution Rapid Refresh, analysis (F00) & forecast; out to forecast hour 48
rap
: Rapid Refresh Model, analysis (F00) & forecast; out to forecast hour 51
nam
: North American Mesoscale Model, analysis (F00) & forecast; out to forecast hour 48
namnest
: Nested North American Mesoscale model, analysis (F00) & forecast; out to forecast hour 60
gfs
: Global Forecast System, analysis (F00) & forecast; out to forecast hour 180
sref
: Short Range Ensemble Forecast, analysis (F00) & forecast; out to forecast hour 84
hiresw
: High Resolution Window Forecast System, analysis (F00) & forecast; out to forecast hour 48
Tip
Running the get_bufkit_data()
function without date kwargs will return the latest available forecast.
Example:
1# RAP model for site KGFK at forecast hour 5
2spy.get_bufkit_data('rap', 'kgfk', 5)
Tip
This data is model forecast data. Users must note that BUFKIT data is model data loaded for specific designated BUFKIT sites
To learn more about BUFKIT check out: IEM BUFKIT page
Observed Data | RAOB & IGRAv2
A function used to access and parse RAOB & IGRAv2 profile data - This function will determine which dataset the user would like to access (RAOB from the University of Wyoming, or IGRAv2 from the IGRAv2 dataset) based on the provided station identifier, then search the appropriate dataset.
- spy.get_obs_data(station, year, month, day, hour, hush=False, clean_it=True)
Return a
dict
of ‘cleaned up’ observed profile data- Parameters:
station (str, required) – may be a three digit RAOB identifier (such as: ‘DTX’), 5 digit WMO identifier (such as: ‘72317’), or 11 digit IGRAv2 identifier (such as: ‘GMM00010393’)
year (str, required) – launch year
month (str, required) – launch month
day (str, required) – launch day
hour (str, required) – launch hour
hush (bool, optional, default is False) – whether to ‘hush’ a read-out of thermodynamic and kinematic parameters when getting data.
clean_it (bool, optional, default is True) – whether to return the raw_data object or a clean_data dict.
- Returns:
clean_data, a dict of ready-to-use vertical profile data including pressure, height, temperature, dewpoint, u-wind, v-wind, & profile information
- Return type:
dict
Note
Some data in these archives may be missing, incomplete or on occasion mislabled. If you can’t find a RAOB you know for sure exists, try increasing or decreasing the launch_hour by 1 hour.
Available RAOB Sites:
Observed Data | ACARS Aircraft Obs
- NOTE: this is a Python
Class
, not a function like the tools above. This
Class
sets up a ‘connection’ to the ACARS data dataset.After setting up a ‘connection’ to the data, you can search for available profiles using the class’s function,
.list_profiles()
Then you may select one of the listed profiles and use it as an argument for the class’s function,
.get_profile()
. See below.
- NOTE: this is a Python
To learn more about ACARS, check out the ‘AIRCRAFT’ section of this webpage: NOAA Observing Systems
- class acars_data
- Parameters:
year (str, required) – observation year
month (str, required) – observation month
day (str, required) – observation day
hour (str, required) – observation hour
- .list_profiles()
Return a list of strings that represents ACARS profiles for a given date and hour.
- .get_profile(profile, hush=False, clean_it=True)
Return a
dict
of ‘cleaned up’ ACARS observation profile data. Do so by selecting one of the profile string “IDs” listed bylist_profiles()
and pasting it as an argument inget_profile()
- Parameters:
profile (str, required) – profile “ID”
- Parameters:
hush (bool, optional, default is False) – whether to ‘hush’ a read-out of thermodynamic and kinematic parameters when getting data.
clean_it (bool, optional, default is True :return: clean_data, a dict of ready-to-use vertical profile data including pressure, height, temperature, dewpoint, u-wind, v-wind, & profile/flight information :rtype: dict) – whether to return the raw_data object or a clean_data dict.
ACARS Data Retrieval Example
Here is a simple example of the ACARS data retrieval functionality:
1# Start by setting up an 'ACARS connection'
2acars_conn = spy.acars_data('2023', '12', '30', '14')
3
4# List profiles
5acars_conn.list_profiles()
6
7'''
8`.list_profiles()` will return a list of all profiles available
9during the date/time entered in `acars_data()`, like this:
10['ATL_1450',
11'AUS_1410',
12'AUS_1430',
13'AUS_1450',
14'BNA_1420',
15'BWI_1430']
16'''
17
18# To now get the data for a profile,
19# copy the 'profile ID' and add it to `.get_profile()`:
20acars_conn.get_profile('AUS_1450')
Note
ACARS data is aircraft observation data, thus these profiles are typically not ‘full’ profiles (i.e., up to 100 hPa). Often times these profiles extend to only 500 hPa or less. They may also contain various errors such as unreasonably dry dewpoints and unreasonably high wind velocities.
What does the data look like?
When using the data-retrevial functions above, they return ‘clean_data’, which is a Python Dictionary of vertical profile data and profile metadata.
- The profile data this dict contains…
clean_data['p']
: an array of pressure dataclean_data['z']
: an array of height dataclean_data['T']
: an array of temperature dataclean_data['Td']
: an array of dewpoint dataclean_data['u']
: an array of u-component of wind dataclean_data['v']
: an array of v-component of wind dataclean_data['omega']
: an array of vertical velocity – model data only
- The profile metadata this dict contains (via clean_data[‘site_info’])…
clean_data['site_info']['site-name']
a str representing the name of a profile site, if available (e.g. ‘DTX’)
clean_data['site_info']['site-lctn']
a str representing additional site location information (e.g. ‘MI US’)
clean_data['site_info']['site-latlon']
a latitude-longitude pair of floats in a list
clean_data['site_info']['site-elv']
elevation of the profile
clean_data['site_info']['source']
a str representing the data source name (e.g. ‘RAOB OBSERVED PROFILE’)
other sources are… ‘ACARS OBSERVED AIRCRAFT PROFILE’, ‘BUFKIT FORECAST PROFILE’, ‘MODEL REANALYSIS PROFILE’, ‘RAOB OBSERVED PROFILE’
clean_data['site_info']['model']
a str representing the model name, if available (e.g., ‘no-model’ or ‘hrrr’)
clean_data['site_info']['fcst-hour']
if a model is used, the forecast hour of the model run as a str (e.g. ‘no-fcst-hour’ or ‘F01’)
clean_data['site_info']['run-time']
if a model is used, the model run time as a list of strs
clean_data['site_info']['valid-time']
the data’s valid time as a list of strs
New to v3.0.5, profile metadata also contains pre-built plot titles (via `clean_data[‘titles’]`). This will make creating titles manually for custom data sources easier.
Below is an example:
{'p': <Quantity([984.7 981.8 976.4 967.1 953.4 935.8 914.8 892. 867.2 839.6 809.2 775.8 739.6 700.4 658.4 613.4 566.1 520.1 478.7 441.6 408.1 377.8 350.5 325.8 303.6 283.6 265.5 248.7 233.5 219.6 205.7 191.7 177.7 163.8 149.8 135.9 121.9 108. 94. 81. 70.6 62.2 54.3], 'hectopascal')>, 'z': <Quantity([ 262.29 287.38 334.72 417.39 540.9 701.94 897.92 1116.39 1360.38 1638.85 1954.13 2311.53 2712.99 3165.6 3673.36 4247.56 4889.99 5558.47 6202. 6817.56 7410.43 7981.44 8527.44 9050.51 9548. 10021.78 10474.5 10917.67 11339.77 11745.44 12172.28 12626.51 13109.32 13623.36 14184.85 14794.86 15466.97 16205.52 17052.44 17961.73 18802.02 19579.02 20415.56], 'meter')>, 'T': <Quantity([ 14.84 17.54 20.04 21.34 21.44 20.44 21.44 22.74 21.64 19.94 17.54 14.84 11.94 8.64 5.24 1.84 -1.86 -6.06 -10.56 -14.66 -18.36 -22.36 -26.66 -30.66 -34.06 -37.26 -40.06 -43.06 -45.96 -48.76 -51.56 -54.46 -56.86 -58.26 -58.66 -59.66 -64.26 -65.26 -64.26 -64.66 -63.86 -63.36 -62.16], 'degree_Celsius')>, 'Td': <Quantity([ 9.3 8.79 8.32 7.88 7.01 6.38 -2.2 -13.24 -14.49 -24.86 -17.51 -9.57 -7.31 -9.9 -12.11 -12.99 -16.41 -20.62 -25.37 -30.93 -36.12 -40.09 -42.47 -45.57 -49.39 -52.06 -54.3 -55.81 -58.64 -62.27 -64.93 -65.45 -68.93 -74.24 -74.84 -101.09 -101.6 -102.16 -102.8 -103.49 -104.11 -104.68 -105.28], 'degree_Celsius')>, 'u': <Quantity([-2.33041109 -2.91567705 -2.3323691 0.77626972 3.5007069 5.63835178 9.13497097 10.6914363 13.41432206 20.79403892 23.12721208 21.57710061 20.41478107 21.38502534 22.54815854 23.51844683 24.29878342 23.71105505 20.98924152 22.35724617 28.57257978 28.18931303 25.65927737 28.56994968 28.57863291 29.73848546 31.87877692 31.48766321 29.74415098 27.98817845 27.59730449 26.43360693 23.32832754 21.76679295 23.12850533 25.85409643 33.62524652 19.4383033 8.94253878 9.13760323 6.0283743 6.02452813 0.38886559], 'knot')>, 'v': <Quantity([ 3.88459575 9.13602361 12.24993691 13.79818123 13.99892679 13.41310886 10.68811982 9.33002089 9.33014275 6.99796725 2.91344493 1.36129697 -1.35952707 -4.85855855 -5.83135029 -5.44263343 -4.85978647 -4.08282603 -4.27412453 -5.44184192 -4.46923758 -0.19680173 -0.19257433 -4.0813693 -2.52543878 -1.75116608 -3.49692463 -2.13557144 0.97112424 2.71960789 2.13803291 0.5813991 1.55355538 5.2458388 6.21890192 20.41100923 13.40831073 9.91285856 15.74811418 9.3310132 9.72277241 7.38416961 6.99920592], 'knot')>, 'omega': <Quantity([ 0. 0. 0. 0. 0. 0.1 0.1 0.1 -0.1 -0.3 -0.4 -0.2 -0.1 0. 0. 0.1 0.1 0. 0. 0. 0. 0. 0. 0.1 0.1 0. 0. 0. -0.1 0. 0. 0.1 0.1 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ], 'pascal / second')>, 'site_info': {'site-id': 'KGFK', 'site-name': 'GRAND FORKS INTL', 'site-lctn': 'ND', 'site-latlon': [47.95, -97.18], 'site-elv': 257, 'source': 'BUFKIT FORECAST PROFILE', 'model': 'RAP', 'fcst-hour': 'F00', 'run-time': ['2024', '09', '28', '04'], 'valid-time': ['2024', '09', '28', '04']}, 'titles': {'top_title': 'BUFKIT MODEL FORECAST PROFILE | 04Z RAP F00', 'left_title': ' RUN: 09/28/2024 04Z | VALID: 09/28/2024 04Z', 'right_title': 'KGFK - GRAND FORKS INTL, ND | 47.95, -97.18 '}}