🌐 Tools for Getting Data

Getting data can be tough, and then getting it into a usable format can often be as bad or worse. Thankfully this is SounderPy’s main purpose and strong suit!

SounderPy is currently capable of accessing and processing data from:

DATA

FUNCTION

TYPE

TIME RANGE

ECMWF CDS ERA5 reanalysis*

get_model_data()

Reanalysis

1940-present

UNIDATA THREDDS TDS RAP

get_model_data()

Reanalysis

2005-present

UNIDATA THREDDS TDS RUC

get_model_data()

Reanalysis

2005-2020

UNIDATA THREDDS NCEP-FNL

get_model_data()

Reanalysis

2005-2020

ISU’s BUFKIT archive

get_bufkit_data()

Model Forecast

2011-present

PSU’s BUFKIT feed

get_bufkit_data()

Model Forecast

Most recent runs

UNIDATA THREDDS TDS RAP

get_model_data()

Model Analysis

Most recent run

OU ACARS Archive

acars_data()

Observations

2019-present

The Unv. of WY RAOB Archive

get_obs_data()

Observations

1973-present

IGRAv2 Observation Archive

get_obs_data()

Observations

1905-present


Model Reanalysis Data | RAP, ERA5, NCEP

SounderPy hosts a simple function used to access model reanalysis profile data from the ERA5, RAP / RUC, & NCEP FNL datasets

This tool accesses pressure-level and surface model data, parses it using a ‘box average approach’, and creates a Python dictionary (referred to as a SounderPy clean_data dict in this documentation), of the vertical profile.

When accessing RAP-RUC data, this tool will search for the given date/time in a list of RAP & RUC datasets available through NCEI – each dataset does have varying output. Because of this, a new argument, dataset, allows you to target a specific dataset instead of searching for the first dataset with the desired date/time.

We can use the simple spy.get_model_data() function:

spy.get_model_data(model, latlon, year, month, day, hour, dataset=None, box_avg_size=0.10, hush=False, clean_it=True)

Return a dict of ‘cleaned up’ model reanalysis data from a given model, for a given location, date, and time

Parameters:
  • model (str, required) – the requested model to use (“rap-ruc”, “era5”, “ncep”)

  • latlon (list, required) – the latitude & longitude pair for sounding ([44.92, -84.72])

  • year (str, required) – valid year

  • month (str, required) – valid month

  • day (str, required) – valid day

  • hour (str, required) – required, valid hour

  • dataset (str, optional, default is None) – target a specific dataset instead of searching for the first one with data (“rap-ruc” only).

  • box_avg_size (int, optional, Default is 0.10) – determine an area-averaged box size, in degrees, by which gridded model data will be averaged to find a single vertical porfile.

  • hush (bool, optional, default is False) – whether to ‘hush’ a read-out of thermodynamic and kinematic parameters when getting data.

  • clean_it (bool, optional, default is True) – whether to return the raw_data object or a clean_data dict.

Returns:

clean_data, a dict of ready-to-use vertical profile data including pressure, height, temperature, dewpoint, u-wind, v-wind, omega & model information

Return type:

dict

Model key names

  • 'era5': ECMWF renalysis v5 (ERA5), reanalysis

  • 'rap', or 'rap-ruc': NCEP Rapid Refresh model (RAP) / Rapid Update Cycle model (RUC), reanalysis

  • 'ncep': NCEP Global Data Assimilation System/Final 0.25 degree (ncep-fnl), reanalysis

  • 'rap-now': NCEP Rapid Refresh model, latest analysis

Dataset key names

  • 'RAP_25km'

  • 'RAP_25km_old'

  • 'RAP_25km_anl'

  • 'RAP_25km_anl_old'

  • 'RAP_13km'

  • 'RAP_13km_old'

  • 'RAP_13km_anl'

  • 'RAP_13km_anl_old'

  • 'RUC_13km'

  • 'RUC_13km_old'

  • 'RUC_25km'

  • 'RUC_25km_old'

Latitude-Longitude pairs

  • A list of floats: [44.92, -84.72]

Note

BEWARE This data is reanalysis, therefore not a forecast & not entirely representative of the actual atmosphere. Understanding the caveats of using reanalysis model data is important when utilizing this function.

Tip

To access ERA5 data you -must- set API access to the ECMWF Climate Data Store (CDS). This includes….

  • creating a CDS API account

  • Setting up a CDS API personal access token

  • Creating a $HOME/.cdsapirc file

Follow the instructions on the CDSAPI “how to” documentation – See: https://cds.climate.copernicus.eu/how-to-api

Tip

Is data access taking forever? Sometimes the NCEP (RAP-RUC, NCEP-FNL) & ECMWF CDS (ERA5) servers are down and not able to be accessed. Sometimes these issues are resolved within hours, other times possibly a few days.


Model Forecast Data | BUFKIT

A function used to access BUFKIT model forecast vertical profile data for a given BUFKIT site

spy.get_bufkit_data(model, station, fcst_hour, run_year=None, run_month=None, run_day=None, run_hour=None, hush=False, clean_it=True)

Return a dict of ‘cleaned up’ model forecast data from a given model, for a given BUFKIT site identifier, forecast hour, & model-run-date

Parameters:
  • model (str, required) – the model ‘key’ name to request data from

  • station (str, required) – a 3-4 digit BUFKIT site identifier

  • fcst_hour (int, required) – valid forecast hour

  • run_year (str, optional, Default=None) – valid year

  • run_month (str, optional, Default=None) – valid month

  • run_day (str, optional, Default=None) – valid day

  • run_hour (str, optional, Default=None) – valid hour

  • hush (bool, optional, default is False) – whether to ‘hush’ a read-out of thermodynamic and kinematic parameters when getting data.

  • clean_it (bool, optional, default is True) – whether to return the raw_data object or a clean_data dict.

Returns:

clean_data, a dict of ready-to-use vertical profile data including pressure, height, temperature, dewpoint, u-wind, v-wind, omega, & model information

Return type:

dict

Available BUFKIT Sites:

Available Models:

  • Most recent model runs:
    • GFS, NAM, NAMNEST, RAP, HRRR, SREF & HIRESW

    • via Penn State’s BUFKIT Warehouse

  • Archive model runs:
    • GFS, NAM, NAMNEST, RAP, HRRR

    • via Iowa State’s BUFKIT Warehouse

Model key names

  • hrrr: High Resolution Rapid Refresh, analysis (F00) & forecast; out to forecast hour 48

  • rap: Rapid Refresh Model, analysis (F00) & forecast; out to forecast hour 51

  • nam: North American Mesoscale Model, analysis (F00) & forecast; out to forecast hour 48

  • namnest: Nested North American Mesoscale model, analysis (F00) & forecast; out to forecast hour 60

  • gfs: Global Forecast System, analysis (F00) & forecast; out to forecast hour 180

  • sref: Short Range Ensemble Forecast, analysis (F00) & forecast; out to forecast hour 84

  • hiresw: High Resolution Window Forecast System, analysis (F00) & forecast; out to forecast hour 48

Tip

Running the get_bufkit_data() function without date kwargs will return the latest available forecast. Example:

1# RAP model for site KGFK at forecast hour 5
2spy.get_bufkit_data('rap', 'kgfk', 5)

Tip

  • This data is model forecast data. Users must note that BUFKIT data is model data loaded for specific designated BUFKIT sites

  • To learn more about BUFKIT check out: IEM BUFKIT page


Observed Data | RAOB & IGRAv2

A function used to access and parse RAOB & IGRAv2 profile data - This function will determine which dataset the user would like to access (RAOB from the University of Wyoming, or IGRAv2 from the IGRAv2 dataset) based on the provided station identifier, then search the appropriate dataset.

spy.get_obs_data(station, year, month, day, hour, hush=False, clean_it=True)

Return a dict of ‘cleaned up’ observed profile data

Parameters:
  • station (str, required) – may be a three digit RAOB identifier (such as: ‘DTX’), 5 digit WMO identifier (such as: ‘72317’), or 11 digit IGRAv2 identifier (such as: ‘GMM00010393’)

  • year (str, required) – launch year

  • month (str, required) – launch month

  • day (str, required) – launch day

  • hour (str, required) – launch hour

  • hush (bool, optional, default is False) – whether to ‘hush’ a read-out of thermodynamic and kinematic parameters when getting data.

  • clean_it (bool, optional, default is True) – whether to return the raw_data object or a clean_data dict.

Returns:

clean_data, a dict of ready-to-use vertical profile data including pressure, height, temperature, dewpoint, u-wind, v-wind, & profile information

Return type:

dict

Note

Some data in these archives may be missing, incomplete or on occasion mislabled. If you can’t find a RAOB you know for sure exists, try increasing or decreasing the launch_hour by 1 hour.

Available RAOB Sites:


Observed Data | ACARS Aircraft Obs

  • NOTE: this is a Python Class, not a function like the tools above.
    • This Class sets up a ‘connection’ to the ACARS data dataset.

    • After setting up a ‘connection’ to the data, you can search for available profiles using the class’s function, .list_profiles()

    • Then you may select one of the listed profiles and use it as an argument for the class’s function, .get_profile(). See below.

  • To learn more about ACARS, check out the ‘AIRCRAFT’ section of this webpage: NOAA Observing Systems

class acars_data
Parameters:
  • year (str, required) – observation year

  • month (str, required) – observation month

  • day (str, required) – observation day

  • hour (str, required) – observation hour

.list_profiles()

Return a list of strings that represents ACARS profiles for a given date and hour.

.get_profile(profile, hush=False, clean_it=True)

Return a dict of ‘cleaned up’ ACARS observation profile data. Do so by selecting one of the profile string “IDs” listed by list_profiles() and pasting it as an argument in get_profile()

Parameters:

profile (str, required) – profile “ID”

Parameters:
  • hush (bool, optional, default is False) – whether to ‘hush’ a read-out of thermodynamic and kinematic parameters when getting data.

  • clean_it (bool, optional, default is True :return: clean_data, a dict of ready-to-use vertical profile data including pressure, height, temperature, dewpoint, u-wind, v-wind, & profile/flight information :rtype: dict) – whether to return the raw_data object or a clean_data dict.

ACARS Data Retrieval Example

Here is a simple example of the ACARS data retrieval functionality:

 1# Start by setting up an 'ACARS connection'
 2acars_conn = spy.acars_data('2023', '12', '30', '14')
 3
 4# List profiles
 5acars_conn.list_profiles()
 6
 7'''
 8`.list_profiles()` will return a list of all profiles available
 9during the date/time entered in `acars_data()`, like this:
10['ATL_1450',
11'AUS_1410',
12'AUS_1430',
13'AUS_1450',
14'BNA_1420',
15'BWI_1430']
16'''
17
18# To now get the data for a profile,
19# copy the 'profile ID' and add it to `.get_profile()`:
20acars_conn.get_profile('AUS_1450')

Note

ACARS data is aircraft observation data, thus these profiles are typically not ‘full’ profiles (i.e., up to 100 hPa). Often times these profiles extend to only 500 hPa or less. They may also contain various errors such as unreasonably dry dewpoints and unreasonably high wind velocities.


What does the data look like?

When using the data-retrevial functions above, they return ‘clean_data’, which is a Python Dictionary of vertical profile data and profile metadata.

The profile data this dict contains…
  • clean_data['p']: an array of pressure data

  • clean_data['z']: an array of height data

  • clean_data['T']: an array of temperature data

  • clean_data['Td']: an array of dewpoint data

  • clean_data['u']: an array of u-component of wind data

  • clean_data['v']: an array of v-component of wind data

  • clean_data['omega']: an array of vertical velocity – model data only

The profile metadata this dict contains (via clean_data[‘site_info’])…
  • clean_data['site_info']['site-name']
    • a str representing the name of a profile site, if available (e.g. ‘DTX’)

  • clean_data['site_info']['site-lctn']
    • a str representing additional site location information (e.g. ‘MI US’)

  • clean_data['site_info']['site-latlon']
    • a latitude-longitude pair of floats in a list

  • clean_data['site_info']['site-elv']
    • elevation of the profile

  • clean_data['site_info']['source']
    • a str representing the data source name (e.g. ‘RAOB OBSERVED PROFILE’)

    • other sources are… ‘ACARS OBSERVED AIRCRAFT PROFILE’, ‘BUFKIT FORECAST PROFILE’, ‘MODEL REANALYSIS PROFILE’, ‘RAOB OBSERVED PROFILE’

  • clean_data['site_info']['model']
    • a str representing the model name, if available (e.g., ‘no-model’ or ‘hrrr’)

  • clean_data['site_info']['fcst-hour']
    • if a model is used, the forecast hour of the model run as a str (e.g. ‘no-fcst-hour’ or ‘F01’)

  • clean_data['site_info']['run-time']
    • if a model is used, the model run time as a list of strs

  • clean_data['site_info']['valid-time']
    • the data’s valid time as a list of strs

New to v3.0.5, profile metadata also contains pre-built plot titles (via `clean_data[‘titles’]`). This will make creating titles manually for custom data sources easier.

Below is an example:

{'p': <Quantity([984.7 981.8 976.4 967.1 953.4 935.8 914.8 892.  867.2 839.6 809.2 775.8
  739.6 700.4 658.4 613.4 566.1 520.1 478.7 441.6 408.1 377.8 350.5 325.8
  303.6 283.6 265.5 248.7 233.5 219.6 205.7 191.7 177.7 163.8 149.8 135.9
  121.9 108.   94.   81.   70.6  62.2  54.3], 'hectopascal')>,
 'z': <Quantity([  262.29   287.38   334.72   417.39   540.9    701.94   897.92  1116.39
   1360.38  1638.85  1954.13  2311.53  2712.99  3165.6   3673.36  4247.56
   4889.99  5558.47  6202.    6817.56  7410.43  7981.44  8527.44  9050.51
   9548.   10021.78 10474.5  10917.67 11339.77 11745.44 12172.28 12626.51
  13109.32 13623.36 14184.85 14794.86 15466.97 16205.52 17052.44 17961.73
  18802.02 19579.02 20415.56], 'meter')>,
 'T': <Quantity([ 14.84  17.54  20.04  21.34  21.44  20.44  21.44  22.74  21.64  19.94
   17.54  14.84  11.94   8.64   5.24   1.84  -1.86  -6.06 -10.56 -14.66
  -18.36 -22.36 -26.66 -30.66 -34.06 -37.26 -40.06 -43.06 -45.96 -48.76
  -51.56 -54.46 -56.86 -58.26 -58.66 -59.66 -64.26 -65.26 -64.26 -64.66
  -63.86 -63.36 -62.16], 'degree_Celsius')>,
 'Td': <Quantity([   9.3     8.79    8.32    7.88    7.01    6.38   -2.2   -13.24  -14.49
   -24.86  -17.51   -9.57   -7.31   -9.9   -12.11  -12.99  -16.41  -20.62
   -25.37  -30.93  -36.12  -40.09  -42.47  -45.57  -49.39  -52.06  -54.3
   -55.81  -58.64  -62.27  -64.93  -65.45  -68.93  -74.24  -74.84 -101.09
  -101.6  -102.16 -102.8  -103.49 -104.11 -104.68 -105.28], 'degree_Celsius')>,
 'u': <Quantity([-2.33041109 -2.91567705 -2.3323691   0.77626972  3.5007069   5.63835178
   9.13497097 10.6914363  13.41432206 20.79403892 23.12721208 21.57710061
  20.41478107 21.38502534 22.54815854 23.51844683 24.29878342 23.71105505
  20.98924152 22.35724617 28.57257978 28.18931303 25.65927737 28.56994968
  28.57863291 29.73848546 31.87877692 31.48766321 29.74415098 27.98817845
  27.59730449 26.43360693 23.32832754 21.76679295 23.12850533 25.85409643
  33.62524652 19.4383033   8.94253878  9.13760323  6.0283743   6.02452813
   0.38886559], 'knot')>,
 'v': <Quantity([ 3.88459575  9.13602361 12.24993691 13.79818123 13.99892679 13.41310886
  10.68811982  9.33002089  9.33014275  6.99796725  2.91344493  1.36129697
  -1.35952707 -4.85855855 -5.83135029 -5.44263343 -4.85978647 -4.08282603
  -4.27412453 -5.44184192 -4.46923758 -0.19680173 -0.19257433 -4.0813693
  -2.52543878 -1.75116608 -3.49692463 -2.13557144  0.97112424  2.71960789
   2.13803291  0.5813991   1.55355538  5.2458388   6.21890192 20.41100923
  13.40831073  9.91285856 15.74811418  9.3310132   9.72277241  7.38416961
   6.99920592], 'knot')>,
 'omega': <Quantity([ 0.   0.   0.   0.   0.   0.1  0.1  0.1 -0.1 -0.3 -0.4 -0.2 -0.1  0.
   0.   0.1  0.1  0.   0.   0.   0.   0.   0.   0.1  0.1  0.   0.   0.
  -0.1  0.   0.   0.1  0.1  0.   0.   0.   0.   0.   0.   0.   0.   0.
   0. ], 'pascal / second')>,
 'site_info': {'site-id': 'KGFK',
  'site-name': 'GRAND FORKS INTL',
  'site-lctn': 'ND',
  'site-latlon': [47.95, -97.18],
  'site-elv': 257,
  'source': 'BUFKIT FORECAST PROFILE',
  'model': 'RAP',
  'fcst-hour': 'F00',
  'run-time': ['2024', '09', '28', '04'],
  'valid-time': ['2024', '09', '28', '04']},
 'titles': {'top_title': 'BUFKIT MODEL FORECAST PROFILE | 04Z RAP F00',
  'left_title': ' RUN: 09/28/2024 04Z  |  VALID: 09/28/2024 04Z',
  'right_title': 'KGFK - GRAND FORKS INTL, ND | 47.95, -97.18    '}}